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Two-photon “bucket” detector in a coherent field

Coherence (mode) volume V. Detection volume Vd
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“To get” does not always mean “to detect”. Any pair can be detected with probability 77(2)
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Two-photon “bucket” detector in a biphoton field
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Two-photon absorption in bulk media: “virtual detectors”

Distribution of singles (“virtual detectors™)
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As expected, the two-photon signal from uncorrelated light is quadratic in intensity and
linear with respect to the exposure time.



In the case of photon pairs that are correlated within the volume Vo

1 Veorr < Vs “if there is one, there is always the other”
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Veorr > Vi “if there 1s one, there may be the other”
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Then the mean-number of absorbed photon pairs is
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Comparing with the result for uncorrelated light, we get for equal exposure times
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We can also compare a SW exposure of duration # with correlated light to a pulse exposure
with coherent light. In this case we get
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It should be possible

[R.A. Borisov et al., Appl. Phys. B 67, 765 (1998)] to get exposure
[Y. Boiko et al., Opt. Express 8, 571 (2001)] in 3 seconds!



Two-photon lithography experiment
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SPDC SPDC and UV
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Focusing SPDC light




Detection by coherent up-conversion
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Correlation-enhanced optical up-conversion
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For coherent CW pump: 50 nW pump —» 1.5*10 Oy
1W pump —» 10° W of SH or about 0.3 photons/s of SH

With the biphoton enhancement factor 200 and
we can expect about 40 photons/s signal.

In a real experiment, the

signal may be lower because //
of alignment and focusing 0, 2ftL12
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angular errors and the effects ei\‘
of an extended source.



[M.H. Rubin, Phys. Rev. A. 54, 5349 (1996)]

Transverse correlation of a lehOtOIl [A.V. Burlakov et. al, Phys. Rev. A. 56, 3214 (1997)]
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Substituting A0 ; (z) into F(0, ABs, AD;) m
we get the overlap between the m

correlation and detection volumes

0.
as a function of the offset z: \U

Wavelength, nm . -~~~ =~

N\

yyyyy

Wavelength, nm



Motivation: to build a detector sensitive to photon pairs, but not to single photons.

WnnN2ep,

E.g.: [T. Hattori et al., Jpn. J. Appl. Phys. 39, 4793 (2000)]
studied two-photon response of PMTs with 15 fs pulses.
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The results obtained with SPDC and with attenuated laser light (at 650 nm = 1.9 eV) look similar:
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In addition to being nonlinear, the photocathode response is time-dependent:
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We t\I/lerefore observe a photosensitization effect resembling the experimental observations by
[B. Santic et al., J. Appl. Phys. 73, 5181 (1993)] for photoconductive current in GaAs at 70 K.
This effect may be explained as the filling of deep traps.
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[B. Santic'et al., J. Appl. Phys. 73, 5181 (1993)] Our measurement result
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The “trapped” or intermediate states we observe have extremely long lifetime at room temperature!
Studying their dynamical and spectral properties may be interesting for material characterization, and
may suggest the way the Cs,Te photocathode can be used for photon pair detection.



Relaxation dynamics and spectral two-photon sensitivity

Cathode Relaxation Dynamics Spectral response
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The normalized response (quantum efficiency) of a previously sensitized photocathode decay fits
a bi-exponential law. This indicates the presence of at least two metastable levels inside the bandgap,
with very long life time.
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The long-lived intermediate states can be de-populated by external radiation (the auenching effect)
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This result suggests that a long-lived intermediate state is at least 1.6 eV
(which corresponds to 775 nm) deep from the conduction band edge.
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Summary and conclusions

We have formulated the phenomenological approach to two-
photon detection based on various physical mechanisms. This approach
allows one to directly use the results of two-photon experiments with
classical sources for prediction of similar experiments outcome with

quantum correlated sources, such as SPDC. Several such experiments
have been discussed.



